61 research outputs found

    Lipid suppression in CSI with spatial priors and highly undersampled peripheral k-space

    Get PDF
    Mapping [superscript 1]H brain metabolites using chemical shift imaging is hampered by the presence of subcutaneous lipid signals, which contaminate the metabolites by ringing due to limited spatial resolution. Even though chemical shift imaging at spatial resolution high enough to mitigate the lipid artifacts is infeasible due to signal-to-noise constraints on the metabolites, the lipid signals have orders of magnitude of higher concentration, which enables the collection of high-resolution lipid maps with adequate signal-to-noise. The previously proposed dual-density approach exploits this high signal-to-noise property of the lipid layer to suppress truncation artifacts using high-resolution lipid maps. Another recent approach for lipid suppression makes use of the fact that metabolite and lipid spectra are approximately orthogonal, and seeks sparse metabolite spectra when projected onto lipid-basis functions. This work combines and extends the dual-density approach and the lipid-basis penalty, while estimating the high-resolution lipid image from 2-average k-space data to incur minimal increase on the scan time. Further, we exploit the spectral-spatial sparsity of the lipid ring and propose to estimate it from substantially undersampled (acceleration R = 10 in the peripheral k-space) 2-average in vivo data using compressed sensing and still obtain improved lipid suppression relative to using dual-density or lipid-basis penalty alone.National Institutes of Health (U.S.) (Grant NIH R01 EB007942)National Science Foundation (U.S.) (Grant 0643836)Siemens-MIT AllianceMIT-Center for Integration of Medicine and Innovative Technology (Medical Engineering Fellowship

    Improved Multi-Shot Diffusion-Weighted MRI with Zero-Shot Self-Supervised Learning Reconstruction

    Full text link
    Diffusion MRI is commonly performed using echo-planar imaging (EPI) due to its rapid acquisition time. However, the resolution of diffusion-weighted images is often limited by magnetic field inhomogeneity-related artifacts and blurring induced by T2- and T2*-relaxation effects. To address these limitations, multi-shot EPI (msEPI) combined with parallel imaging techniques is frequently employed. Nevertheless, reconstructing msEPI can be challenging due to phase variation between multiple shots. In this study, we introduce a novel msEPI reconstruction approach called zero-MIRID (zero-shot self-supervised learning of Multi-shot Image Reconstruction for Improved Diffusion MRI). This method jointly reconstructs msEPI data by incorporating deep learning-based image regularization techniques. The network incorporates CNN denoisers in both k- and image-spaces, while leveraging virtual coils to enhance image reconstruction conditioning. By employing a self-supervised learning technique and dividing sampled data into three groups, the proposed approach achieves superior results compared to the state-of-the-art parallel imaging method, as demonstrated in an in-vivo experiment.Comment: 10 pages, 4 figure

    Echo Planar Time-Resolved Imaging (EPTI) with Subspace Reconstruction and Optimized Spatiotemporal Encoding

    Full text link
    Purpose: To develop new encoding and reconstruction techniques for fast multi-contrast quantitative imaging. Methods: The recently proposed Echo Planar Time-resolved Imaging (EPTI) technique can achieve fast distortion- and blurring-free multi-contrast quantitative imaging. In this work, a subspace reconstruction framework is developed to improve the reconstruction accuracy of EPTI at high encoding accelerations. The number of unknowns in the reconstruction is significantly reduced by modeling the temporal signal evolutions using low-rank subspace. As part of the proposed reconstruction approach, a B0-update algorithm and a shot-to-shot B0 variation correction method are developed to enable the reconstruction of high-resolution tissue phase images and to mitigate artifacts from shot-to-shot phase variations. Moreover, the EPTI concept is extended to 3D k-space for 3D GE-EPTI, where a new temporal-variant of CAIPI encoding is proposed to further improve performance. Results: The effectiveness of the proposed subspace reconstruction was demonstrated first in 2D GESE EPTI, where the reconstruction achieved higher accuracy when compared to conventional B0-informed GRAPPA. For 3D GE-EPTI, a retrospective undersampling experiment demonstrates that the new temporal-variant CAIPI encoding can achieve up to 72x acceleration with close to 2x reduction in reconstruction error when compared to conventional spatiotemporal-CAIPI encoding. In a prospective undersampling experiment, high-quality whole-brain T2* and QSM maps at 1 mm isotropic resolution was acquired in 52 seconds at 3T using 3D GE-EPTI with temporal-variant CAIPI encoding. Conclusion: The proposed subspace reconstruction and optimized temporal-variant CAIPI encoding can further improve the performance of EPTI for fast quantitative mapping

    MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping

    Get PDF
    Quantifying tissue iron concentration in vivo is instrumental for understanding the role of iron in physiology and in neurological diseases associated with abnormal iron distribution. Herein, we use recently-developed Quantitative Susceptibility Mapping (QSM) methodology to estimate the tissue magnetic susceptibility based on MRI signal phase. To investigate the effect of different regularization choices, we implement and compare â„“[subscript 1] and â„“[subscript 2] norm regularized QSM algorithms. These regularized approaches solve for the underlying magnetic susceptibility distribution, a sensitive measure of the tissue iron concentration, that gives rise to the observed signal phase. Regularized QSM methodology also involves a pre-processing step that removes, by dipole fitting, unwanted background phase effects due to bulk susceptibility variations between air and tissue and requires data acquisition only at a single field strength. For validation, performances of the two QSM methods were measured against published estimates of regional brain iron from postmortem and in vivo data. The in vivo comparison was based on data previously acquired using Field-Dependent Relaxation Rate Increase (FDRI), an estimate of MRI relaxivity enhancement due to increased main magnetic field strength, requiring data acquired at two different field strengths. The QSM analysis was based on susceptibility-weighted images acquired at 1.5 T, whereas FDRI analysis used Multi-Shot Echo-Planar Spin Echo images collected at 1.5 T and 3.0 T. Both datasets were collected in the same healthy young and elderly adults. The in vivo estimates of regional iron concentration comported well with published postmortem measurements; both QSM approaches yielded the same rank ordering of iron concentration by brain structure, with the lowest in white matter and the highest in globus pallidus. Further validation was provided by comparison of the in vivo measurements, â„“[subscript 1]-regularized QSM versus FDRI and â„“[subscript 2]-regularized QSM versus FDRI, which again yielded perfect rank ordering of iron by brain structure. The final means of validation was to assess how well each in vivo method detected known age-related differences in regional iron concentrations measured in the same young and elderly healthy adults. Both QSM methods and FDRI were consistent in identifying higher iron concentrations in striatal and brain stem ROIs (i.e., caudate nucleus, putamen, globus pallidus, red nucleus, and substantia nigra) in the older than in the young group. The two QSM methods appeared more sensitive in detecting age differences in brain stem structures as they revealed differences of much higher statistical significance between the young and elderly groups than did FDRI. However, QSM values are influenced by factors such as the myelin content, whereas FDRI is a more specific indicator of iron content. Hence, FDRI demonstrated higher specificity to iron yet yielded noisier data despite longer scan times and lower spatial resolution than QSM. The robustness, practicality, and demonstrated ability of predicting the change in iron deposition in adult aging suggest that regularized QSM algorithms using single-field-strength data are possible alternatives to tissue iron estimation requiring two field strengths.National Institutes of Health (U.S.) (Grant NIH R01 EB007942)National Institutes of Health (U.S.) (Grant AG019717)National Institutes of Health (U.S.) (Grant AA005965)National Institutes of Health (U.S.) (Grant AA017168)National Institutes of Health (U.S.) (Grant EB008381)National Science Foundation (U.S.) (Grant 0643836)Siemens CorporationSiemens-MIT AllianceMIT-Center for Integration of Medicine and Innovative Technology (Medical Engineering Fellowship

    Scan Specific Artifact Reduction in K-space (SPARK) Neural Networks Synergize with Physics-based Reconstruction to Accelerate MRI

    Full text link
    Purpose: To develop a scan-specific model that estimates and corrects k-space errors made when reconstructing accelerated Magnetic Resonance Imaging (MRI) data. Methods: Scan-Specific Artifact Reduction in k-space (SPARK) trains a convolutional-neural-network to estimate and correct k-space errors made by an input reconstruction technique by back-propagating from the mean-squared-error loss between an auto-calibration signal (ACS) and the input technique's reconstructed ACS. First, SPARK is applied to GRAPPA and demonstrates improved robustness over other scan-specific models, such as RAKI and residual-RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual-RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC-) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave-encoded images. Results: SPARK yields 1.5x - 2x RMSE reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan-specific techniques. When applied to advanced reconstruction techniques such as residual-RAKI, 2D VC-GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves performance by ~2x and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non-cartesian 2D and 3D wave-encoding imaging by reducing RMSE between 20-25% and providing qualitative improvements. Conclusion: SPARK synergizes with physics-based acquisition and reconstruction techniques to improve accelerated MRI by training scan-specific models to estimate and correct reconstruction errors in k-space

    Joint multi-contrast Variational Network reconstruction (jVN) with application to rapid 2D and 3D imaging

    Full text link
    Purpose: To improve the image quality of highly accelerated multi-channel MRI data by learning a joint variational network that reconstructs multiple clinical contrasts jointly. Methods: Data from our multi-contrast acquisition was embedded into the variational network architecture where shared anatomical information is exchanged by mixing the input contrasts. Complementary k-space sampling across imaging contrasts and Bunch-Phase/Wave-Encoding were used for data acquisition to improve the reconstruction at high accelerations. At 3T, our joint variational network approach across T1w, T2w and T2-FLAIR-weighted brain scans was tested for retrospective under-sampling at R=6 (2D) and R=4x4 (3D) acceleration. Prospective acceleration was also performed for 3D data where the combined acquisition time for whole brain coverage at 1 mm isotropic resolution across three contrasts was less than three minutes. Results: Across all test datasets, our joint multi-contrast network better preserved fine anatomical details with reduced image-blurring when compared to the corresponding single-contrast reconstructions. Improvement in image quality was also obtained through complementary k-space sampling and Bunch-Phase/Wave-Encoding where the synergistic combination yielded the overall best performance as evidenced by exemplarily slices and quantitative error metrics. Conclusion: By leveraging shared anatomical structures across the jointly reconstructed scans, our joint multi-contrast approach learnt more efficient regularizers which helped to retain natural image appearance and avoid over-smoothing. When synergistically combined with advanced encoding techniques, the performance was further improved, enabling up to R=16-fold acceleration with good image quality. This should help pave the way to very rapid high-resolution brain exams

    Fast image reconstruction with L2-regularization

    Get PDF
    Purpose We introduce L2-regularized reconstruction algorithms with closed-form solutions that achieve dramatic computational speed-up relative to state of the art L1- and L2-based iterative algorithms while maintaining similar image quality for various applications in MRI reconstruction. Materials and Methods We compare fast L2-based methods to state of the art algorithms employing iterative L1- and L2-regularization in numerical phantom and in vivo data in three applications; (i) Fast Quantitative Susceptibility Mapping (QSM), (ii) Lipid artifact suppression in Magnetic Resonance Spectroscopic Imaging (MRSI), and (iii) Diffusion Spectrum Imaging (DSI). In all cases, proposed L2-based methods are compared with the state of the art algorithms, and two to three orders of magnitude speed up is demonstrated with similar reconstruction quality. Results The closed-form solution developed for regularized QSM allows processing of a three-dimensional volume under 5 s, the proposed lipid suppression algorithm takes under 1 s to reconstruct single-slice MRSI data, while the PCA based DSI algorithm estimates diffusion propagators from undersampled q-space for a single slice under 30 s, all running in Matlab using a standard workstation. Conclusion For the applications considered herein, closed-form L2-regularization can be a faster alternative to its iterative counterpart or L1-based iterative algorithms, without compromising image quality.National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant NIBIB K99EB012107)National Institutes of Health (U.S.) (Grant NIH R01 EB007942)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant NIBIB R01EB006847)Grant K99/R00 EB008129National Center for Research Resources (U.S.) (Grant NCRR P41RR14075)National Institutes of Health (U.S.) (Blueprint for Neuroscience Research U01MH093765)Siemens CorporationSiemens-MIT AllianceMIT-Center for Integration of Medicine and Innovative Technology (Medical Engineering Fellowship
    • …
    corecore